NumPy log() Function:
Natural log python numpy: The log() function of the NumPy module finds the natural logarithm(base e) of a specified value.
The inverse of exp() is the natural logarithm log, therefore log(exp(x)) = x.
Hence, the natural logarithm means log with base e.
Syntax:
numpy.log(a, out=None)
Parameters
a: This is required. It is an array or an object given as input.
out: This is optional. It is the location where the result will be stored. It must have a shape that the inputs broadcast to if it is provided. If None or not given, a newly allocated array is returned.
Return Value:
np.log: The natural logarithm of each element of a is returned by the log() function of the NumPy module.
- Python NumPy log1p() Function
- Python numpy.log() Function with Examples
- Python NumPy log10() Function
NumPy log() Function in Python
Example1
Approach:
- Import numpy module using the import keyword
- Pass some random list as an argument to the array() function of the numpy module to create an array.
- Store it in a variable.
- Print the above-given array.
- Pass the above-given array as an argument to the log() function of the numpy module to get the natural logarithmic(base e) values of each element of the given array.
- Store it in another variable.
- Print the natural logarithmic values of each element of the given array.
- The Exit of the Program.
Below is the implementation:
# Import numpy module using the import keyword import numpy as np # Pass some random list as an argument to the # array() function to create an array. # Store it in a variable. gvn_arry = np.array([5, 1, 2.4, 10.5, 4]) # Print the above given array. print("The above given array is:") print(gvn_arry) print() # Pass the above given array as an argument to the log() function of the # numpy module to get the natural logarithmic(base e) values of each element of # the given array # Store it in another variable. rslt = np.log(gvn_arry) # Print the natural logarithmic values of each element of the given array print("The natural logarithmic values of each element of the given array:") print(rslt)
Output:
The above given array is: [ 5. 1. 2.4 10.5 4. ] The natural logarithmic values of each element of the given array: [1.60943791 0. 0.87546874 2.35137526 1.38629436]
Example2(Plotting a Graph)
Approach:
- Import numpy module using the import keyword
- Import pyplot from the matplotlib module using the import keyword
- Pass some random list as an argument to the array() function of the numpy module to create an array.
- Store it in a variable.
- Pass the above given array as an argument to the log() function of the numpy module to get the natural logarithmic(base e) values of each element of the given array
- Store it in another variable.
- Plot the input array with some random color and marker values using the plot() function of the matplotlib module
- Plot the output array(numpy log values) with some other random color and marker values
using the plot function of the matplotlib module - Give the title of the plot using the title() function of the matplotlib module
- Display the plot using the show() function of the matplotlib module.
- The Exit of the Program.
Below is the implementation:
# Import numpy module using the import keyword import numpy as np # Import pyplot from the matplotlib module using the import keyword import matplotlib.pyplot as plt # Pass some random list as an argument to the array() function of the # numpy module to create an array. # Store it in a variable. gvn_arry = np.array([5, 1, 2.4, 10.5, 4]) # Pass the above given array as an argument to the log() function of the # numpy module to get the natural logarithmic(base e) values of each element of # the given array # Store it in another variable. rslt = np.log(gvn_arry) # Plot the input array with some random color and marker values using the # plot function of the matplotlib module plt.plot(gvn_arry, gvn_arry, color = 'green', marker = "*") # Plot the output array(numpy log values) with some other random color and marker values # using the plot() function of the matplotlib module plt.plot(rslt, gvn_arry, color = 'orange', marker = "o") # Give the title of the plot using the title() function of the matplotlib module plt.title("NumPy log values") plt.xlabel("Output array(natural log values)") plt.ylabel("Given input array") # Display the plot using the show() function of the matplotlib module plt.show()
Output: