Python Pandas Series prod() Function

Pandas Series prod() Function:

The prod() method of the Pandas module returns the product of the values along the chosen axis.

Syntax:

Series.prod(axis=None, skipna=None, level=None, numeric_only=None, min_count=0)

Parameters

axis: This is optional. It indicates 0 or ‘index’. This is the axis on which the function will be applied.

skipna: This is optional. When computing the result, specify True to exclude NA/null values. The default value is True.

level: This is optional. It indicates the level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. The level name is specified by str.

numeric_only: This is optional. Pass True to include just float, int, or boolean data. False by default

min_count: This is optional. It indicates the required number of valid values. to do the operation. The result will be NA if the count of non-NA values is less than the min_count.

Return Value:

If a level is given, it returns a scalar or a series. The product values are returned.

Python Pandas Series prod() Function

Example1

Approach:

  • Import pandas module using the import keyword.
  • Import numpy module using the import keyword.
  • Give the category(level) values as arguments list to from_arrays() functions
  • Pass some random list, index values from the above and name as Numbers as the arguments to the Series() function of the pandas module to create a series.
  • Store it in a variable.
  • Print the above-given series
  • Printing the product of all elements in the given series using the prod() function
  • Printing the product of each level of the series using level=’DataType’
  • Printing the product of each level of the series using level=0.
  • The Exit of the Program.

Below is the implementation:

# Import pandas module using the import keyword.
import pandas as pd
# Import numpy module using the import keyword.
import numpy as np
# Give the category(level) values as arguments list to from_arrays() functions
gvn_indx = pd.MultiIndex.from_arrays([
    ['positive', 'negative', 'positive', 
     'positive', 'negative', 'negative']],
    names=['DataType'])
# Pass some random list, index values from the above and name as Numbers
# as the arguments to the Series() function of the pandas module to create a series.
# Store it in a variable.
gvn_series = pd.Series([2, 3, 4, 5, 1, 2], 
              name='Numbers', index=gvn_indx)

# Print the above given series
print("The given series is:")
print(gvn_series)
print()
# Printing the product of all elements in the given series 
# using the prod() function
print("Product of all elements in the given series : ")
print(gvn_series.prod())
print()
# Printing the product of each level of the series using level='DataType'
print("Product of all level values using level='DataType':")
print(gvn_series.prod(level='DataType'))
print()
# Printing the product of each level of the series using level=0
print("Product of all level values using level=0:")
print(gvn_series.prod(level=0))

Output:

The given series is:
DataType
positive    2
negative    3
positive    4
positive    5
negative    1
negative    2
Name: Numbers, dtype: int64

Product of all elements in the given series : 
240

Product of all level values using level='DataType':
DataType
positive    40
negative     6
Name: Numbers, dtype: int64

Product of all level values using level=0:
DataType
positive    40
negative     6
Name: Numbers, dtype: int64

Example2

Approach:

  • Import pandas module using the import keyword.
  • Pass some random key-value pair(dictionary), index list as arguments to the DataFrame() function of the pandas module to create a dataframe.
  • Store it in a variable.
  • Print the given dataframe.
  • Apply prod() function on the student_rollno column of the dataframe to get the product of all the values of the student_rollno column and print the result.
  • The Exit of the Program.

Below is the implementation:

# Import pandas module using the import keyword.
import pandas as pd
# Pass some random key-value pair(dictionary), index list as arguments to the 
# DataFrame() function of the pandas module to create a dataframe
# Store it in a variable.
data_frme = pd.DataFrame({
  "student_rollno": [1, 2, 3, 4],
  "student_marks": [80, 35, 25, 90]},
  index= ["virat", "nick" , "jessy", "sindhu"]
)
# Print the given dataframe
print("The given Dataframe:")
print(data_frme)
print()
# Apply prod() function on the student_rollno column of the dataframe to
# get the product of all the values of the student_rollno column
# and print the result.
print("The product of student_rollno column of the dataframe:")
print(data_frme["student_rollno"].prod())

Output:

The given Dataframe:
        student_rollno  student_marks
virat                1             80
nick                 2             35
jessy                3             25
sindhu               4             90

The product of student_rollno column of the dataframe:
24