Pandas Series ne() Function:
The ne() function of the Pandas module compares series and other, element-by-element, for not equal to and returns the outcome of the comparison. It is equivalent to series!= other, but with the ability to provide a fill_value as one of the parameters to replace missing data.
Syntax:
Series.ne(other, level=None, fill_value=None)
Parameters
other: This is required. It indicates a Series or a scalar value.
level: This is optional. To broadcast over a level, specify an int or a name that matches the Index values on the passed MultiIndex level. The type of this may be int or name. None is the default value.
fill_value: This is optional. It indicates a value to fill in any current missing (NaN) values, as well as any new elements required for successful Series alignment. The result will be missing if data is missing in both corresponding Series locations. The type of this may be float or None. None is the default value.
Return Value:
The result of the comparison i.e, a boolean series is returned.
- Python Pandas Series ge() Function
- Python Pandas Series eq() Function
- Python Pandas DataFrame add() Function
Pandas Series ne() Function in Python
Example1
Approach:
- Import pandas module using the import keyword.
- Pass some random list as an argument to the Series() function of the pandas module to create a series.
- Store it in a variable.
- Print the above-given series.
- Apply ne() function on all the elements of the given series by passing some random number to it and print the result.
- Here it compares if all the elements of the given series are != 40 (not equal to 40)
- The Exit of the Program.
Below is the implementation:
# Import pandas module using the import keyword. import pandas as pd # Pass some random list as an argument to the Series() function # of the pandas module to create a series. # Store it in a variable. gvn_series = pd.Series([12, 40, 65, 40, 100]) # Print the above given series print("The given series is:") print(gvn_series) print() # Apply ne() function on all the elements of the given series # by passing some random number to it and print the result. # Here it compares if all the elements of the given series != 40 print("Checking if all the elements of the given series are != 40:") print(gvn_series.ne(40))
Output:
The given series is: 0 12 1 40 2 65 3 40 4 100 dtype: int64 Checking if all the elements of the given series are != 40: 0 True 1 False 2 True 3 False 4 True dtype: bool
Example2
Approach:
- Import pandas module using the import keyword.
- Import numpy module using the import keyword.
- Pass some random list, index values as the arguments to the Series() function of the pandas module to create the first series and store it in a variable.
- Pass some random list, index values as the arguments to the Series() function of the pandas module to create the second series and store it in another variable.
- Print the given first series
- Print the given second series
- Pass the above second series, fill_value as the arguments to the ne() function and apply it on the first series to check for the NOT equal to(!=) condition and print the result.
- Here it compares if the elements of the first series != second series by replacing NaN values with 10
- The Exit of the Program.
Below is the implementation:
# Import pandas module using the import keyword. import pandas as pd # Import numpy module using the import keyword. import numpy as np # Pass some random list, index values as the arguments to the Series() function # of the pandas module to create the first series and store it in a variable. fst_series = pd.Series([13, 25, np.NaN, 20, 70], index=['P', 'Q', 'R', 'S', 'T']) # Pass some random list, index values as the arguments to the Series() function # of the pandas module to create the second series and store it in another variable. scnd_series = pd.Series([9, 25, 10, 20, np.NaN], index=['P', 'Q', 'R', 'S', 'T']) # Print the given first series print("The given first series is:") print(fst_series) print() # Print the given second series print("The given second series is:") print(scnd_series) print() # Pass the above second series, fill_value as the arguments to the ne() function # and apply it on the first series to check for the NOT equal to(!=) condition # and print the result. # Here it compares if the elements of the first series != second series by replacing # NaN values with 10 print("Comparing if the elements of the first series != second series:") print(fst_series.ne(scnd_series, fill_value = 10))
Output:
The given first series is: P 13.0 Q 25.0 R NaN S 20.0 T 70.0 dtype: float64 The given second series is: P 9.0 Q 25.0 R 10.0 S 20.0 T NaN dtype: float64 Comparing if the elements of the first series != second series: P True Q False R False S False T True dtype: bool
Example3
Approach:
- Import pandas module using the import keyword.
- Pass some random key-value pair(dictionary) as arguments to the DataFrame() function of the pandas module to create a dataframe.
- Store it in a variable.
- Print the given dataframe.
- Compare both the columns gvn_list1 and gvn_list2 using the ne() function and store the result as a new column in the dataframe.
- Here it checks if gvn_list1 != gvn_list2 (not equal to) element-wise.
- Print the dataframe after adding a new column(gvn_list1 != gvn_list2).
- The Exit of the Program.
Below is the implementation:
# Import pandas module using the import keyword. import pandas as pd # Pass some random key-value pair(dictionary) as arguments to the # DataFrame() function of the pandas module to create a dataframe # Store it in a variable. data_frme = pd.DataFrame({ "gvn_list1": [45, 24, 54, 90], "gvn_list2": [45, 7, 54, 44] }) # Print the given dataframe print("The given Dataframe:") print(data_frme) print() # Compare both the columns gvn_list1 and gvn_list2 using the ne() function # and store the result as a new column in the dataframe. # Here it checks if gvn_list1 != gvn_list2(not equal to) element-wise. data_frme ['gvn_list1 != gvn_list2'] = data_frme ['gvn_list1'].ne(data_frme ['gvn_list2']) # Print the dataframe after adding a new column(gvn_list1 != gvn_list2) print("The dataframe after adding a new column(gvn_list1 != gvn_list2):") print(data_frme )
Output:
The given Dataframe: gvn_list1 gvn_list2 0 45 45 1 24 7 2 54 54 3 90 44 The dataframe after adding a new column(gvn_list1 != gvn_list2): gvn_list1 gvn_list2 gvn_list1 != gvn_list2 0 45 45 False 1 24 7 True 2 54 54 False 3 90 44 True