Pandas DataFrame items() Function:
The items() function of the pandas dataframe iterates over the (column name, Series) pairs.
Iterate over the DataFrame columns with the items() method of the Pandas DataFrame, which returns a tuple containing the column name and the content as a Series.
Syntax:
DataFrame.items()
Parameters: This method doesn’t accept any parameters
Return Value:
Gives the following:
label: This is required. The type of this is an object. The names of the columns in the DataFrame being iterated over.
content: This is required. The type of this is a series. The column entries belonging to each label, as a Series.
- Python Pandas DataFrame itertuples() Function
- Python Pandas DataFrame mul() Function
- Python Pandas DataFrame div() Function
Pandas DataFrame items() Function in Python
Approach:
- Import pandas module using the import keyword.
- Import NumPy module using the import keyword.
- Pass some random key-value pair(dictionary), index list as arguments to the DataFrame() function of the pandas module to create a dataframe
- Print the given dataframe
- Loop in the label and data of the dataframe using the for loop and the items() functions and print the corresponding label and data.
- The Exit of the Program.
Below is the implementation:
# Import pandas module using the import keyword. import pandas as pd # Import NumPy module using the import keyword. import numpy as np # Pass some random key-value pair(dictionary), index list as arguments to the # DataFrame() function of the pandas module to create a dataframe data_frme = pd.DataFrame({ "emp_name": ["john", "nick" , "jessy", "mary"], "emp_age": [25, 35, 38, 22], "emp_salary": [25000, 40000, 22000, 80000]}, index= [1, 2, 3, 4] ) # Print the given dataframe print("The given Dataframe:") print(data_frme) print() # Loop in the label and data of the dataframe using the for loop and the items() functions # and print the corresponding label and data for label, data in data_frme.items(): print(f'label: {label}') print(f'data: \n{data}') print()
Output:
The given Dataframe: emp_name emp_age emp_salary 1 john 25 25000 2 nick 35 40000 3 jessy 38 22000 4 mary 22 80000 label: emp_name data: 1 john 2 nick 3 jessy 4 mary Name: emp_name, dtype: object label: emp_age data: 1 25 2 35 3 38 4 22 Name: emp_age, dtype: int64 label: emp_salary data: 1 25000 2 40000 3 22000 4 80000 Name: emp_salary, dtype: int64