Numpy true_divide() Function:
The product of the two NumPy arrays is calculated using the NumPy multiply function. It calculates the element-by-element product of the two arrays, say l1 and l2. The numpy. multiply() function is a universal function, which means it has numerous options that can be used to optimize its performance based on the algorithm’s characteristics.
Syntax:
numpy.true_divide(l1, l2, out=None)
Parameters:
l1 and l2: (Required)
Required. The arrays that will be divided must be specified. They must be broadcastable to a common shape if l1.shape!= l2.shape
out:
This is optional. It is the location where the result will be saved. It must have a shape that the inputs broadcast to if it is provided. If None or not given, a newly allocated array is returned.
Return Value:
True division of l1 and l2 (l1/l2) is returned by the true divide() function.
NumPy true_divide() Function in Python
Approach:
- Import NumPy module using the import keyword.
- Pass some random list as an argument to the array() function to create an array.
- Store it in a variable.
- Create some sample arrays of different shapes to test the true_divide() function.
- Pass the first array and some random number to true_divide() function of NumPy module and print the result.
- Here it divides the second argument for each element of the array.
- Print the result array.
- Pass the first array and second array to true_divide() function of NumPy module and print the result.
- Here it truly divides the second array elements for the first array element.
- Print the result array.
- Similarly, test it with other arrays of different shapes.
- The Exit of the Program.
Below is the implementation:
# Import NumPy module using the import keyword. import numpy as np # Pass some random list as an argument to the array() function to create an array. # Store it in a variable. arry1 = np.array([[32,64],[95,128],[150,180]]) # Create some sample arrays of different shapes to test the true_divide() function. arry2 = np.array([[10,20]]) arry3 = np.array([[100],[200],[300]]) arry4 = np.array([[55,65],[75,85],[95,105]]) # Pass the first array and some random number to true_divide() function of NumPy module and print the result. # Here it divides the second argument for each element of the array. print('True Dividing random number say 10 to the first array : ') print('True Dividing 10 to first array gives :\n',np.true_divide(arry1, 10)) # Print the result array. # Pass the first array and second array to true_divide() function of NumPy module and print the result. # Here it true divides the second array elements for the first array element. # Print the result array. print('True Dividing first array and second array : ') print(np.true_divide(arry1, arry2)) # Similarly, test it with other arrays of different shapes. print('True Dividing first array and third array : ') print(np.true_divide(arry1, arry3)) print('True Dividing first array and fourth array : ') print(np.true_divide(arry1, arry4))
Output:
True Dividing random number say 10 to the first array : True Dividing 10 to first array gives : [[ 3.2 6.4] [ 9.5 12.8] [15. 18. ]] True Dividing first array and second array : [[ 3.2 3.2] [ 9.5 6.4] [15. 9. ]] True Dividing first array and third array : [[0.32 0.64 ] [0.475 0.64 ] [0.5 0.6 ]] True Dividing first array and fourth array : [[0.58181818 0.98461538] [1.26666667 1.50588235] [1.57894737 1.71428571]]