NP.random.rand(): Random values in a specific shape are returned by the NumPy random.rand() function. The method generates an array of the specified shape and populates it with random samples obtained from a continuous uniform distribution over the range [0, 1).
The following relationship can be used to generate random values from unif[a, b), b>a:
(b-a) * np.random.rand() + a
Syntax:
numpy.random.rand(d0, d1, d2, ..., dn)
Parameters
Random.rand(): d0, d1, d2, …, dn: This is Optional. Specify the dimensions of the returned array, which must be entirely positive. If no arguments are provided, a single Python float is returned.
Return Value:
It Returns a set of random values in the shape specified.
- Python NumPy random.random() Function
- Python NumPy random.random_sample() Function
- Python NumPy log1p() Function
NumPy random.rand() Function in Python
Example1
Approach:
- Import numpy module using the import keyword.
- Get a random number using the numpy.random.rand() function and store it in a variable.
- Print the above generated random number.
- The Exit of the Program.
Below is the implementation:
# Import numpy module using the import keyword import numpy as np # Get a random number using the numpy.random.rand() function # and store it in a variable. randm_num = np.random.rand() # print the above generated random number print("The random number generated = ", randm_num)
Output:
The random number generated = 0.14114364047169525
Example2
Approach:
- Import numpy module using the import keyword.
- Get random numbers using the numpy.random.rand() function in a given shape(row_size*col_size) and store it in a variable.
- Print the above generated random numbers in a given shape.
- The Exit of the Program.
Below is the implementation:
# Import numpy module using the import keyword import numpy as np # Get random numbers using the numpy.random.rand() function in a given # shape(row_size*col_size) and store it in a variable. randm_num = np.random.rand(4, 5) # Print the above generated random numbers in a given shape. print("The random numbers generated in a given shape =\n ", randm_num)
Output:
The random numbers generated in a given shape = [[0.84399159 0.96751163 0.75330974 0.98124625 0.50085139] [0.93878372 0.80936363 0.46275984 0.34299838 0.9416278 ] [0.51676061 0.34870336 0.14311732 0.95984252 0.78771714] [0.63220278 0.65999758 0.95409713 0.78054772 0.36499181]]
Example3
Random.rand(): We can define the uniform distribution to draw the sample from by using (b-a) * np.random.rand() + a relationship
Approach:
- Import numpy module using the import keyword.
- Applying the above formula by giving some random shape, b, and a values to generate random numbers.
- Store it in a variable
- Print the above generated random numbers using the formula given.
- The Exit of the Program.
Below is the implementation:
# Import numpy module using the import keyword import numpy as np # Applying the above formula by giving some random shape, b and a values # to generate random numbers # Store it in a variable randm_num = (30-15) * np.random.rand(4, 5) + 15 # Print the above generated random numbers using the formula given. print("The random numbers generated using the formula given =\n ", randm_num)
Output:
The random numbers generated using the formula given = [[25.6565808 16.71057355 20.78746727 21.03278992 24.95020658] [28.8047786 18.06276967 15.06002763 22.27933719 18.3527819 ] [22.26829286 20.81859816 16.32016847 26.67076438 19.8136504 ] [21.55532992 26.02711819 24.86898579 20.36485819 27.74491685]]