How to check if a dataframe is empty in Python ?
Python check if dataframe is empty: In this article we will see different ways to check if a dataframe is empty in python.
Approach-1 : Check whether dataframe is empty using Dataframe.empty :
How to check if dataframe is empty: There is an empty
attribute provided by dataframe class in python.
Syntax - Dataframe.empty
If it returns True then the dataframe is empty.
# Program : import pandas as pd # empty Dataframe created dfObj = pd.DataFrame(columns=['Date', 'UserName', 'Action']) # Checking if Dataframe is empty or not # using empty attribute if dfObj.empty == True: print('DataFrame is empty') else: print('DataFrame is not empty')
Output : DataFrame is not empty
- Python Pandas DataFrame ne() Function
- Python Pandas DataFrame ge() Function
- Python Pandas DataFrame eq() Function
Even if it contains NaN then also it returns the data frame is empty.
# Program : import pandas as pd import numpy as np # List of Tuples students = [(np.NaN, np.NaN, np.NaN), (np.NaN, np.NaN, np.NaN), (np.NaN, np.NaN, np.NaN) ] # Dataframe object created dfObj = pd.DataFrame(columns=['Your Name', 'Your Age', 'Your City']) # Checking if Dataframe is empty or not # using empty attribute if dfObj.empty == True: print('DataFrame is empty') else: print('DataFrame is not empty')
Output : DataFrame is empty
Approach-2 : Check if dataframe is empty using Dataframe.shape :
There is an shape attribute provided by dataframe class in python.
Syntax- Dataframe.shape
shape attribute return a tuple containing dimension of dataframe. Like if in the dataframe there is 3 rows and 4 columns then it will return (3,4). If the dataframe is empty then it will return 0 at 0th index.
# Create an empty Dataframe dfObj = pd.DataFrame(columns=['Date', 'UserName', 'Action']) # Check if Dataframe is empty using dataframe's shape attribute if dfObj.shape[0] == 0: print('DataFrame is empty') else: print('DataFrame is not empty')
Output : DataFrame is empty
Approach-3 : Check if dataframe is empty by checking length of index :
Dataframe.index
represents indices of Dataframe. If the dataframe is empty then size will be 0.
# Program : import pandas as pd import numpy as np # empty Dataframe object created dfObj = pd.DataFrame(columns=['Date', 'UserName', 'Action']) # checking if length of index is 0 or not if len(dfObj.index.values) == 0: print('DataFrame is empty') else: print('DataFrame is not empty')
Output : DataFrame is empty
Approach-4 : Check if dataframe is empty by using len on Datafarme :
Directly by calling the len()
function we can also check the dataframe is empty or not. If the length of dataframe is 0 then it the dataframe is empty.
# Program : import pandas as pd import numpy as np # empty Dataframe object created dfObj = pd.DataFrame(columns=['Date', 'UserName', 'Action']) # checking if length of dataframe is 0 or not # by calling len() if len(dfObj) == 0: print('DataFrame is empty') else: print('DataFrame is not empty')
Output : DataFrame is not empty
Want to expert in the python programming language? Exploring Python Data Analysis using Pandas tutorial changes your knowledge from basic to advance level in python concepts.
Read more Articles on Python Data Analysis Using Padas – Find Elements in a Dataframe
- Check if a value exists in a DataFrame using in & not in operator | isin()
- Find & Drop duplicate columns in a DataFrame
- Find duplicate rows in a Dataframe based on all or selected columns using DataFrame.duplicated() in Python
- Find maximum values & position in columns or rows of a Dataframe
- Find indexes of an element in pandas dataframe